$\measuredangle \in S \rightarrow$ GOAL？$(x)=T$ or F ，Step Cost，and Path Cost．The fringe is the set of all search nodes that haven＇t been expanded yet．
Jninformed Search：Complete？Optimal？Complexity
Jomplete：is the algorithm guaranteed to find a solution when there is one？Optimality：does the strategy find the optimal solution？Time zomplexity：how long does it take to find a solution？Space complexity：how much memory is needed to perform the search？
3FS（complete，optimal if step cost is 1 ，complexity $O\left(b^{\wedge} d\right)$ where d is depth of shallowest goal node），DFS（Complete only for finite search tree Vot optimal，time complexity $O\left(b^{\wedge} m\right)$ Space Complexity $O(m)$ where m ：maximal depth of a leaf node），ID visits the nodes in the search tree in the same order as depth－first search，but the cumulative order in which nodes are first visited，assuming no pruning，is effectively breadth－firs complete，optimal if step cost is 1 ）time complexity $\mathrm{O}\left(\mathrm{b}^{\wedge} \mathrm{d}\right)$ and Space Complexity $\mathrm{O}(\mathrm{m})$ ．
łeuristic Search：an evaluation function f maps each node N of the search tree to a real number $f(N) \geq 0$ ．Best－first（greedy）search sorts FRINGE n increasing $f(f(N)=h(N)) . f(N)=g(N)+h(N)$ ，where，$g(N)$ is the cost of the path from the initial node to $N, h(N)$ is an estimate of the cost of ； jath from N to a goal node．
The heuristic function $h(N)$ is admissible if： $0 \leq h(N) \leq h^{*}(N)$ where $h^{*}(N)$ is be the cost of the optimal path from N to a goal node，a．k．a．，neve jverestimates or it is optimistic．$h(G)=0$ ，where G is the goal state．
An admissible heuristic can usually be seen as the cost of an optimal solution to a relaxed problem（one obtained by removing constraints）．
$\underline{t^{*}}$ ：greedy order by $f(N)=g(N)+h(N)$ ，where：$g(N)=$ cost of best path found so far to $N, h(N)=$ admissible heuristic function．For all arcs：$c(N, N$＇）： $\therefore>0$ ．A^{*} is complete and optimal．This result holds if nodes revisiting states are not discarded
An admissible heuristic h is consistent（or monotone）if for each node N and each child N^{\prime} of $N: h(N) \leq c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)$ ．A consistent heuristic is alsc admissible．
＿et h_{1} and h_{2} be two consistent heuristics such that for all nodes N ：$h_{1}(N) \leq h_{2}(N)$ ．h_{2} is said to be more accurate（or more informed）than h_{1} terative Deepening A＊（IDA＊）．Idea：Reduce memory requirement of A^{*} by applying cutoff on values of f ．Consistent heuristic function h ．Algorithn DA＊：Initialize cutoff to $f($ initial－node）．Repeat：［Perform depth－first search by expanding all nodes N such that $f(N) \leq$ cutoff．Reset cutoff to smalles salue f of non－expanded（leaf）nodes］Advantages：Still complete and optimal，requires less memory than A^{*} and avoid the overhead to sort ths ringe．Drawbacks：Can＇t avoid revisiting states not on the current path，available memory is poorly used．
Adversarial Search：MIN－MAX search．（1）Using the current state as the initial state，build the game tree uniformly to the leaf nodes．（2）Evaluat whether leaf nodes are wins（＋1），losses（－1），or draws（0）．（3）Back up the results from the leaves to the root and pick the best action assumins he worst from MIN．Minimax algorithm．Complete？Yes，if tree is finite．Optimal？Yes，against optimal opponent．Otherwise．．．？．Timt somplexity？ $\mathrm{O}\left(\mathrm{b}^{\mathrm{h}}\right)$ ．Space complexity？ $\mathrm{O}(\mathrm{bh})$
Uinimax examines $\mathrm{O}\left(\mathrm{b}^{h}\right)$ nodes，so does alpha－beta in the worst－case Alpha beta pruning
「he gain for alpha－beta is maximum when：
The children of a MAX node are ordered in decreasing backed up values
「he children of a MIN node are ordered in increasing backed up values
「hen alpha－beta examines $\mathrm{O}\left(\mathrm{b}^{\mathrm{h} / 2}\right)$ nodes

Trobabilistic Reasoning：$P(A, B)=P(A \mid B) P(B)$ ．Bayes Rule：$P(A \mid B)=P(B \mid A) P(A) / P(B)$ ．Marginalization：$P(C)=S_{t} S_{p} P(C \wedge t \wedge p)$
$\supset(a \vee b)=P(a)+P(b)-P(a \wedge b) . P(a \mid b)$ is the posterior probability of a given knowledge that event b is true．
「wo events a and b are independent if $P(a \wedge b)=P(a) P(b)$ hence $P(a \mid b)=P(a)$ ．
「wo events a and b are conditionally independent given c ，if $P(a \wedge b \mid c)=P(a \mid c) P(b \mid c)$ hence $P(a \mid b, c)=P(a \mid c)$

3ayes Networks

Factorization of the joint distribution

$$
p(x)=\prod_{v \in V} p\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

A node is independent of its non－descendants
given its parents
Inference：Marginalization
$\mathrm{P}(\mathrm{A})=\Sigma_{\mathrm{b}, \mathrm{e}} \mathrm{P}(\mathrm{A}, \mathrm{b}, \mathrm{e})$

A node is independent of its non－descendents，given its parents

Evidence on the（directed）road between two variables makes them independent Evidence on ar ＂A＂node makes descendants independent Evidence on a＂V＂node，or below the V ，makes the ancestors of the variables dependent（otherwise they are independent）
$P(M)=P(M, A)+P(M,-A)=P(M \mid A) P(A)+P(M \mid-A) P(-A)$［1．Marginalization，2．Conditioning］ with $P(A)=\operatorname{sum}_{b, e} P(A, b, e)=\operatorname{sum}_{b, e} P(A \mid b, e) P(b) P(e)$［1．Marginalization， 2.
Conditioning＋independence assumptions］

3lary \perp Earthquake
nCalls \perp MaryCalls｜Alarm
nCalls \perp Burglary \mid Alarm nCalls \perp Earthquake｜Alarm yCalls \perp Burglary｜Alarm yCalls \perp Earthquake｜Alarm
and $P(-A)=1-P(A) . / / / P(M \mid J)=P(M, A \mid J)+P(M,-A \mid J)=P(M \mid A, J) P(A \mid J)+P(M \mid-A, J) P(-A \mid J)=$
$P(M \mid A) P(A \mid J)+P(M \mid-A) P(-A \mid J)[1)$ marginalization，2）conditioning，3）conditional independence 0 M and J given A ］
$P(A \mid J)=P(J \mid A) P(A) / P(J)$［Bayes rule］
$P(-A \mid J)=1-P(A \mid J) P(A)$ is given in Q1，$P(J)$ is computed in the same way as $P(M)$ in Q1．

Vaximum Likelihood: Likelihood of data $d=\left\{d_{1}, \ldots, d_{N}\right\}$ given $q . P(d \mid q)=P_{j} P\left(d_{j} \mid q\right)$. Log is monotonically increasing function $I(q)=\log P(d \mid q) . d l / d q(q$ $=0$ at the maximum likelihood estimate. $P(q \mid d)$ is known as the maximum a posteriori (MAP) estimate

Vachine Learning: Agent has made observations (data). Now must make sense of it (hypotheses). Basic form: learn a function from examples. s the unknown target function. An example is a pair $(x, f(x))$. Problem: find a hypothesis h such that $h \approx f$, given a training set of examples D nstance of supervised learning: Classification task: $f \rightarrow\{0,1, \ldots, C\}$ (usually $C=1$). Regression task: $f \rightarrow$ reals. (KIS).
SVM: let $y^{i}=-1$ or 1 . Boundary $w^{\top} x+b=0,\|w\|=1$, geometric margin is $y^{i}\left(w^{\top} x^{i}+b\right)$. SVMs try to optimize the minimum margin over all examples 3ayesian learning (find parameters of a probabilistic model) [Maximum likelihood, Maximum a posteriori]. Classification [Decision trees (discret attributes, few relevant), Support vector machines (continuous attributes)]. Regression [Least squares (known structure, easy to interpret), Neura lets (unknown structure, hard to interpret)] Nonparametric approaches [k-Nearest-Neighbors, Locally-weighted averaging / regression]
Jross-validation: Take out some of the training set. Train on the remaining training set. Test on the excluded instances
Agents: Simple reflex (aka reactive, rule-based), Model-based, Goal-based, Utility-based (aka decision-theoretic, game-theoretic), Learning (aki adaptive).
「ypes of Environment: Observable / non-observable, Deterministic / nondeterministic, Episodic / non-episodic, Single-agent / Multi-agent.
$J(s)=R(s)+\max _{a=A p p l(s)} \Sigma_{s^{\prime} S S u c(s, a)} P\left(s^{\prime} \mid s, a\right) U\left(s^{\prime}\right)$
Action Uncertainty: Each action representation is of the form: Action: $a(s)->\left\{s_{1}, \ldots, s_{r}\right\}$ where each $s_{i}, i=1, \ldots, r$ describes one possible effect of the action in a state s

