
Search: State Space, Search Tree (branching factor, depth), States, Successors Function    x ∈ S → SUCC(x) ∈ 2S, Initial State s0, Goal State 
x∈S → GOAL?(x) =T or F, Step Cost, and Path Cost. The fringe is the set of all search nodes that haven’t been expanded yet. 
Uninformed Search: Complete? Optimal? Complexity 
Complete: is the algorithm guaranteed to find a solution when there is one? Optimality: does the strategy find the optimal solution? Time 
complexity: how long does it take to find a solution? Space complexity: how much memory is needed to perform the search? 
BFS (complete, optimal if step cost is 1, complexity O(b^d) where d is depth of shallowest goal node), DFS (Complete only for finite search tree, 
Not optimal, time complexity O(b^m) Space Complexity O(m) where m: maximal depth of a leaf node), ID visits the nodes in the search tree in the 
same order as depth-first search, but the cumulative order in which nodes are first visited, assuming no pruning, is effectively breadth-first 
(complete, optimal if step cost is 1) time complexity O(b^d) and Space Complexity O(m). 
Heuristic Search: an evaluation function f maps each node N of the search tree to a real number f(N) ≥ 0. Best-first (greedy) search sorts FRINGE 
in increasing f (f(N) = h(N)).  f(N) = g(N) + h(N), where, g(N) is the cost of the path from the initial node to N, h(N) is an estimate of the cost of a 
path from N to a goal node. 
The heuristic function h(N) is admissible if: 0 ≤ h(N) ≤ h*(N)  where h*(N) is be the cost of the optimal path from N to a goal node, a.k.a., never 
overestimates or it is optimistic. h(G) = 0, where G is the goal state. 
An admissible heuristic can usually be seen as the cost of an optimal solution to a relaxed problem (one obtained by removing constraints). 
A*: greedy order by f(N) = g(N) + h(N), where: g(N) = cost of best path found so far to N, h(N) = admissible heuristic function. For all arcs: c(N,N’) ≥ 
ε > 0. A* is complete and optimal. This result holds if nodes revisiting states are not discarded 
An admissible heuristic h is consistent (or monotone) if for each node N and each child N’ of N: h(N) ≤ c(N,N’) + h(N’). A consistent heuristic is also 
admissible. 
Let h1 and h2 be two consistent heuristics such that for all nodes N:  h1(N) ≤ h2(N). h2 is said to be more accurate (or more informed) than h1 
Iterative Deepening A* (IDA*). Idea: Reduce memory requirement of A* by applying cutoff on values of f. Consistent heuristic function h. Algorithm 
IDA*: Initialize cutoff to f(initial-node). Repeat: [Perform depth-first search by expanding all nodes N such that f(N) ≤ cutoff. Reset cutoff to smallest 
value f of non-expanded (leaf) nodes] Advantages: Still complete and optimal, requires less memory than A* and avoid the overhead to sort the 
fringe. Drawbacks: Can’t avoid revisiting states not on the current path, available memory is poorly used. 
Adversarial Search: MIN-MAX search. (1)Using the current state as the initial state, build the game tree uniformly to the leaf nodes. (2) Evaluate 
whether leaf nodes are wins (+1), losses (-1), or draws (0). (3) Back up the results from the leaves to the root and pick the best action assuming 
the worst from MIN. Minimax algorithm. Complete?  Yes, if tree is finite. Optimal?  Yes, against optimal opponent.  Otherwise…?. Time 
complexity? O(bh). Space complexity? O(bh) 
Minimax examines O(bh) nodes, so does alpha-beta in the worst-case Alpha beta pruning 
The gain for alpha-beta is maximum when: 
The children of a MAX node are ordered in decreasing backed up values 
The children of a MIN node are ordered in increasing backed up values 
Then alpha-beta examines O(bh/2) nodes 

 
 

Probabilistic Reasoning: P(A,B) = P(A|B)P(B). Bayes Rule: P(A|B) = P(B|A) P(A) / P(B). Marginalization: P(C) = StSp P(C∧ t∧p) 
P(a ∨ b) = P(a) + P(b) - P(a ∧ b). P(a|b) is the posterior probability of a given knowledge that event b is true. 
Two events a and b are independent if P(a ∧ b) = P(a) P(b) hence P(a|b) = P(a) . 
Two events a and b are conditionally independent given c, if P(a ∧ b|c) = P(a|c) P(b|c) hence P(a|b,c) = P(a|c) 
Bayes Networks 

 

Factorization of the joint distribution 

  
A node is independent of its non-descendants  
given its parents 

Inference: Marginalization 
P(A) = Σb,e P(A,b,e) 

 
 

 

Evidence on the (directed) road between two variables makes them independent Evidence on an 
“A” node makes descendants independent Evidence on a “V” node, or below the V, makes the 
ancestors of the variables dependent (otherwise they are independent) 
P(M) = P(M,A) + P(M,-A) = P(M|A)P(A) + P(M|-A)P(-A) [1. Marginalization, 2. Conditioning] 
with P(A) = sumb,e P(A,b,e) = sumb,e P(A|b,e)P(b)P(e) [1. Marginalization, 2. 
Conditioning+independence assumptions] 
and P(-A) = 1-P(A)./// P(M|J) = P(M,A|J) + P(M,-A|J) = P(M|A,J)P(A|J) + P(M|-A,J)P(-A|J) = 
P(M|A)P(A|J) + P(M|-A)P(-A|J) [1) marginalization, 2) conditioning, 3) conditional independence of 
M and J given A] 
P(A|J) = P(J|A)P(A)/P(J) [Bayes rule] 
P(-A|J) = 1-P(A|J) P(A) is given in Q1, P(J) is computed in the same way as P(M) in Q1. 



 
Maximum Likelihood: Likelihood of data d={d1,…,dN} given q. P(d|q) = Pj P(dj|q). Log is monotonically increasing function l(q) = log P(d|q). dl/dq(q) 
= 0 at the maximum likelihood estimate. P(q|d) is known as the maximum a posteriori (MAP) estimate 
 
Machine Learning: Agent has made observations (data). Now must make sense of it (hypotheses). Basic form: learn a function from examples. f 
is the unknown target function. An example is a pair (x, f(x)). Problem: find a hypothesis h such that h ≈ f, given a training set of examples D. 
Instance of supervised learning: Classification task: f → {0,1,…,C} (usually C=1). Regression task: f → reals. (KIS). 
SVM: let yi = -1 or 1. Boundary wTx+b = 0, ||w||=1, geometric margin is yi(wTxi+b). SVMs try to optimize the minimum margin over all examples 
Bayesian learning (find parameters of a probabilistic model) [Maximum likelihood, Maximum a posteriori]. Classification [Decision trees (discrete 
attributes, few relevant), Support vector machines (continuous attributes)]. Regression [Least squares (known structure, easy to interpret), Neural 
nets (unknown structure, hard to interpret)] Nonparametric approaches [k-Nearest-Neighbors, Locally-weighted averaging / regression] 
Cross-validation: Take out some of the training set. Train on the remaining training set. Test on the excluded instances 
Agents: Simple reflex (aka reactive, rule-based), Model-based, Goal-based, Utility-based (aka decision-theoretic, game-theoretic), Learning (aka 
adaptive). 
Types of Environment: Observable / non-observable, Deterministic / nondeterministic, Episodic / non-episodic, Single-agent / Multi-agent. 
U(s) = R(s) + maxa∈Appl(s)Σs’∈Succ(s,a) P(s’|s,a)U(s’) 
Action Uncertainty: Each action representation is of the form: Action: a(s) -> {s1,…,sr} where each si, i = 1, ..., r describes one possible effect of the 
action in a state s  
 
 
 


